1
Final Exam / Re: FE-P4
« on: December 14, 2018, 11:30:19 AM »
homo: det(A-I𝝀) = (1-𝝀)(-1-𝝀)+2 = 0 , 𝝀= i, -i
when 𝛌 = i, A-iI = 1-i, -2 ~ 1-i , -2
1, -1-i 0 0
the eigenvector V is span{[2
1-i]}
eitV = (cos(t)+isin(t))V = [2cos(t)+ 2isin(t)
cos(t)-icos(t) + isin(t)+sin(t)]
[x,y] = c1[2cos(t) + c2[2sin(t)
cos(t)+sin(t)] -cos(t)+sin(t)]
𝟇(t) = 2cos(t) 2sin(t)
cos(t)+sin(t) -cos(t)+sin(t)
Let 𝜱(t)·u' = g(t)
2cos(t) 2sin(t) sec(𝑡)
cos(t)+sin(t) -cos(t)+sin(t) 0
2u'1cos(t) + 2u'2sin(t) = sec(t)
u'1cos(t)+u'1sin(t) -u'2cos(t)+u'2sin(t) = 0
u2 = ∫(cos(t)+sin(t))/2cos(t)) =1/2(t-ln|cos(t)|)+C1
u1 = ∫-1/2(cos(t) = -1/2sin(t)+C2
x = [-1/2sin(t)+C2 ] [2cos(t) 2sin(t)]
y [ 1/2(t-ln|cos(t)|)+C1][cost+sint -cos(t)+sin(t)]
when 𝛌 = i, A-iI = 1-i, -2 ~ 1-i , -2
1, -1-i 0 0
the eigenvector V is span{[2
1-i]}
eitV = (cos(t)+isin(t))V = [2cos(t)+ 2isin(t)
cos(t)-icos(t) + isin(t)+sin(t)]
[x,y] = c1[2cos(t) + c2[2sin(t)
cos(t)+sin(t)] -cos(t)+sin(t)]
𝟇(t) = 2cos(t) 2sin(t)
cos(t)+sin(t) -cos(t)+sin(t)
Let 𝜱(t)·u' = g(t)
2cos(t) 2sin(t) sec(𝑡)
cos(t)+sin(t) -cos(t)+sin(t) 0
2u'1cos(t) + 2u'2sin(t) = sec(t)
u'1cos(t)+u'1sin(t) -u'2cos(t)+u'2sin(t) = 0
u2 = ∫(cos(t)+sin(t))/2cos(t)) =1/2(t-ln|cos(t)|)+C1
u1 = ∫-1/2(cos(t) = -1/2sin(t)+C2
x = [-1/2sin(t)+C2 ] [2cos(t) 2sin(t)]
y [ 1/2(t-ln|cos(t)|)+C1][cost+sint -cos(t)+sin(t)]