$$Homo: r^3 -3r^2+4r-2=0$$
$$r_1=1r_2=1+ir_3=1-i$$
$$\therefore y_c(t)=c_1e^t+c_2e^tcost+c_3e^tsint$$
Non-Homo:
$$y^{'''}-3y{''}+4y{'}-2y=10e^t+10e^{-t} +20cost$$
$$y^{'''}-3y{''}+4y{'}-2y=10e^t$$
$$y_{p1}(t)=Ate^t$$
$$y^{'}=Ate^t+ Ae^t $$
$$y^{''} = Ate^t+ 2Ae^t $$
$$y^{'}= Ate^t+ 3Ae^t $$
substitute above into the function:
$$y^{'''}-3y{''}+4y{'}-2y=10e^t$$
$$we have: A=-10$$
$$\therefore y_{p1}(t)=-10e^t $$
$$y^{'''}-3y{''}+4y{'}-2y=10e^t$$
$$y^{'''}-3y{''}+4y{'}-2y=10e^{-t}$$
$$y_{p2}(t)=Ae^{-t} $$
$$y^{'}= -Ae^{-t}$$
$$y^{''}= Ae^{-t} $$
$$y^{'''}= -Ae^{-t} $$
substitute above into the function:
$$y^{'''}-3y{''}+4y{'}-2y=10e^t$$
we have A=1
$$\therefore y_{p2}(t)=e^{-t} $$
$$y^{'''}-3y{''}+4y{'}-2y=20cost$$
$$y_{p3}(t)=Acost+Bsint $$
$$y^{'}= -Asint+Bcost$$
$$y^{''}= -Acost-Bsint $$
$$y^{'''}= Asint-Bcost$$
substitute above into the function:
we have A=2, B=6
$$\therefore y_{p3}(t)=2cost+6sint $$
$$\therefore y(t)= c_1e^t+c_2e^tcost+c_3e^tsint-10e^t+ e^{-t} + 2cost+6sint $$
I also think the A for At$e^{t}$ should be 10,so the final solution for non home part should be $10te^{t}-e^{-t}+2cost-6sint$ which is same as Jingyi's